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The Brinkley-Kirkwood theory (1947) is modified to determine the law of propa- 
gation of a blast wave in an arbitrary inhomogeneous medium for spherically 
and cylindrically symmetric cases. The shock path is obtained in terms of a 
simple quadrature. The numerical results for the shock path and the entire flow 
region behind the shock, propagating in an exponential atmosphere, show 
excellent agreement with the exact numerical solution. 

1. Introduction 
The nonlinear partial differential equations governing gas flows do not 

generally admit exact solutions. This is particularly so for flows involving shock 
discontinuities. Some similarity solutions have, however, been obtained in a 
closed form under very special conditions. A few approximate methods which 
give flow conditions just behind the shock as it propagates have also been 
proposed but the flow in the entire region behind the shock is not determined. 
The two methods in this category, which have been widely used, are the Chester, 
Chisnell and Whitham (CCW)? method and the Brinkley-Kirkwood (BK) 
theory. Recently, Laumbach & Probstein (1969) have suggested another approxi- 
mate method for studying the propagation of a blast wave in a medium of an 
exponentially decreasing and increasing density. Their technique is based on 
the basic assumption, Chernyi (1959), that the mass in the blast wave is almost 
entirely concentrated on the shock-surface heading the blast. They have em- 
ployed an integral method of the type discussed by Hayes & Probstein (1966). 
Their numerical results agree very well with the exact numerical solution in the 
medium with exponentially increasing density and also up to a few scale heights 
for the medium with exponentially decreasing density. They have also con- 
sidered the shape of the shock under the local radiality condition. 

The purpose of the present paper is to give a modification of the BK theory, 
Brinkley & Kirkwood (1947), to obtain the solution of a blast wave problem in 
an inhomogeneous medium under the well-known assumption that the total 
energy of the blast is constant during its propagation. The BK theory has been 
widely used in astrophysical contexts, Sachdev (1968, 1970), Nadezhin & 
Frank-Kamenetskii (1965). It is known to give good results when the flow 
becomes self-similar in a region far away from the source. In the present paper 

t See Chester (1954), Chisnell (1955) and Whitham (1958). 
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we first modify this theory for the constant energy solution, evaluating the simi- 
larity parameter v(y)  in this theory from the exact similarity solution of Taylor 
(1950) for the blast wave propagation in a uniform medium. We make the 
assumption that this similarity parameter will serve in the inhomogeneous case 
too. This is the only assumption in the derivation of the shock propagation law; 
otherwise the BK theory makes exact use of the governing differential equations. 
This assumption indeed gives good agreement with the exact numerical solution. 
Thus we obtain a technique which does not suffer from the rather restrictive 
assumption of Laumbach & Probstein, that the entire mass of the blast is 
concentrated at  the shock, which has been used at several points in the derivation 
of the shock law. On the other hand, we use the expansion about the shock 
suggested by Laumbach & Probstein to get flow parameters in the region behind 
the shock after the shock law is known from the BK theory. We fmd an excellent 
agreement with the exact numerical results of Troutman & Davis (1965). Our 
modification of the B B  theory may be compared with the modification of the 
CCW method by Hayes (1968). 

2. Theory 
The BK theory makes use of the equations of motion and continuity in a 

hybrid Lagrangian-Eulerian form specialized at the shock front. A third equa- 
tion is obtained by differentiating the momentum equation from the Rankine- 
Hugoniot conditions along the shock path. The fourth relation between the 
partial derivatives at  the shock is obtained by imposing a similarity restraint 
on the energy-time curve of the shock wave and considering the dissipation of 
shock energy. These four relations are solved simultaneously to obtain two 
ordinary differential equations giving the variation of shock energy and shock 
strength with the distance traversed by the shock. We omit the details, for which 
reference may be made to Sachdev (1967) and Kogure & Osaki (1962). We 
further assume here that the energy of the shock E is constant so that in the BK 
theory we get only one equation, giving the pressure behind a strong shock in 
an inhomogeneous medium, 

Here p, po and R are the pressure behind the shock, undisturbed density ahead 
of the shock and shock radius, measured from the source, respectively, and y 
is the ratio of specific heats, y = cp/cv.  The similarity parameter v is assumed to 
be a function of y and a = 2 , l  for the spherically and cylindrically symmetric 
cases respectively. We note that if we adopt Schatzman’s (1949) assumption as 
to the particle path after the particle crosses a strong shock we get the shock 
energy to be exactly constant. We consider in detail the case a = 2 in order to 
compare our resuIts with those of Laumbach & Probstein (1969). After reducing 
R by a characteristic length A, which in the exponential medium appears in the 
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ro being the Lagrangian co-ordinate, reducing t by (E/4.rrpgA5)* and p by ps (a 
constant), we integrate equation (2.1) to obtain 

R2 . = (7 + ') (5y  - '1 pdl-3y)/(5y-I) R[-4(2ya-y+l~1/[(y+l) (57-1)l 

4V(Y) 
x [ IOB R[2(ra+6y-3)I1[(5y-1) (r+lllpgy/(5y-l) dR . (2.3) 1 --I 

To obtain the dependence of v on y we compare the solution of (2.1) for the - ~ 

uniform medium, 25 7y2+16y-7E R5t-2 = - - 
6477 v(y) Po' 

with the exact solution of Taylor (1950), 

R5t-2 = (l/k) (E/po), (2.5) 

where k is tabulated for different values of' y in the paper by Taylor (1950) and 
is also given in our table 1 below. By comparing (2.4) and (2.5) we find that 
v(y) = (25k/64n) (7yZ+ 16y- 7). Thus v can be found for each y by suitable 
interpolation; we use the same value of v for the inhomogeneous case. 

Y 1.2 1-3 1.4 1.667 
k 1.727 1-167 0.856 0.487 

TABLE 1. Values of k versus y (Taylor 1950) for the spherically symmetric case 

The formula (2.3) for the propagation of a spherical blast wave in an inhomo- 
geneous medium is quite general and involves only a simple quadrature. 

3. Results for an exponential medium 
To compare the numerical results as obtained by the formula (2.3) with the 

available exact numerical solution of Troutman & Davis (1965), we write the 
shock laws for the media with exponentially decreasing and increasing density, 
with upper sign in the following equation corresponding to the former and the 
lower to the latter: 

To get the flow in the region behind the shock we follow Laumbach & Probstein 
(1969). Using the shock law (3.1) and retaining terms up to second order in the 
expansion for the Eulerian co-ordinate r about the shock front we have 
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In  the above, - and + correspond to quantities pertaining to the decreasing 
and increasing density medium respectively, ro is the Lagrangian co-ordinate 
and 5 = rJR. The subscript s denotes conditions just behind the shock. We 
omit the details of the deduction of the above formulae which may be easily 
obtained by referring to the paper by Laumbach & Probstein (1969). 

We have compared the numerical values of & and R as well as the pressure 
and density distributions in the entire region behind the shock for both increasing 
and decreasing density media with those of Probstein & Laumbach (1969, 
figures 3, 4, 6 and 7). The agreement for the increasing density medium is 
excellent. For the medium with the decreasing density, it is good only up to 
R N 6A after which increases much more rapidly in our case (figure 1). Since 
the exact numerical results are not available for this range of R it is difficult to 
make a definite conclusion. However, the approximation in the method of 
Laumbach & Probstein, that the entire mass behind the shock is concentrated 
on the shock surface itself, improves as the shock propagates in the downward 
direction while it grows worse in the upward direction with the density de- 
creasing exponentially. This might explain the divergence of our results from 
those of Laumbach & Probstein. We have not given the comparative results 
corresponding to figures 4, 6 and 7 of their paper since the results agree so well 
that they cannot be distinguished on the graph. 

The motion assumes a self-similar character when the shock has moved far 
from the source, so that there is no longer any dependence on the energy of the 
blast, and the shock strength changes owing to the local non-uniformities. 
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Sachdev (1970) has given a comparative study of results obtained by the method 
of characteristics, the CCW method and the BK theory for different density 
inhomogeneities. The general conclusion reached was that the CCW method 
and the BK theory have a more or less comparable accuracy, though the BK 
theory gave a little better results in some cases. We note that the comparative 
study of the CCW method and BK theory by Kaplan (1967) is erroneous because 
of the omission of a factor 4 2  in his expression for shock law according to the 
CCW method. The agreement between the two theories is much better after this 
correction has been introduced. 
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FIGURE 1. Shock velocity in upward direction as a function of shock position. 
-, Laumbach & Probstein (1969) ; - - -, modified BK theory. 

4. Concluding remarks 
We have given a modified form of the BK theory to study the propagation of 

a blast wave in an (arbitrary) inhomogeneous medium. The shock path for a 
general density distribution in the undisturbed medium and for the spherically 
and cylindrically symmetric cases is obtained in terms of a simple quadrature. 
The numerical results obta,ined by this method agree remarkably with the 
exact numerical solutions. The flow field behind the shock is obtained following 
an earlier paper by Laumbach & Probstein after the shock path has been obtained 
by the modified BK theory. These again show good agreement with exact 
numerical solution. 

We hope to give, in a future communication, an extension of these results to 
the consideration of effects of explosions a t  large distances, where the counter- 
pressure is important, and also to the determination of the shape of the shock 
during the course of its propagation. 

The author expresses his sincere thanks to Professor C. 0. Hines for help and 
encouragement during the preparation of this paper. A useful discussion with 
Professor R. F. Probstein on this paper is gratefully acknowledged. This work 
was supported by the National Research Council of Canada, under grant A 3940. 
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